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Abstract

Worldwide image geolocalization—the task of predicting GPS coordinates from
images taken anywhere on Earth—poses a fundamental challenge due to the vast
diversity in visual content across regions. While recent approaches adopt a two-
stage pipeline of retrieving candidates and selecting the best match, they typically
rely on simplistic similarity heuristics and point-wise supervision, failing to model
spatial relationships among candidates. In this paper, we propose GeoRanker, a
distance-aware ranking framework that leverages large vision-language models
to jointly encode query–candidate interactions and predict geographic proximity.
In addition, we introduce a multi-order distance loss that ranks both absolute and
relative distances, enabling the model to reason over structured spatial relationships.
To support this, we curate GeoRanking, the first dataset explicitly designed for
geographic ranking tasks with multimodal candidate information. GeoRanker
achieves state-of-the-art results on two well-established benchmarks (IM2GPS3K
and YFCC4K), significantly outperforming current best methods.

1 Introduction

G3 Top5 Top10 Top20
0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 a
t 1

km

0.167

0.233
+39.9% 0.280

+68.1% 0.327
+96.2%

Figure 1: Accuracy at 1km er-
ror threshold for G3 (Current
SOTA) vs. the best candidate
within top-k retrieved results.

Worldwide geolocalization [1, 2] refers to the task of predicting the
GPS coordinates of images captured anywhere on Earth. Unlike
approaches constrained to specific cities or regions [3, 4, 5, 6, 7],
global geolocalization poses significantly greater challenges due
to the immense diversity in visual content, ranging from natural
landscapes and climatic variations to architectural differences and
cultural markers [8, 9, 10]. Despite these complexities, accurate
global geolocalization holds broad practical relevance, with a wide
range of applications including criminal investigations [11], naviga-
tion systems [12], and environmental monitoring [13].

Recent state-of-the-art approaches [8, 9, 10, 14] typically follow a
two-stage pipeline: (1) retrieving and generating a set of candidates
based on a global database, and (2) selecting the top match as the predicted geolocation. As shown
in Figure 1, although the current SOTA model (G3 [14], which ranks candidates via GPS location-
image embedding similarity) achieves 16.7% accuracy at 1km error threshold on IM2GPS3K, better
candidates often exist among the top-k retrieved results. This suggests that one can retrieve reasonably
high-quality candidates, yet the final prediction accuracy hinges on the second stage—the model’s
ability to compare spatial relevance and select the most plausible candidate. Currently, the candidate
selection is often limited by naïve heuristics such as cosine similarity [8, 14], which generally encode
the query image and candidates independently, without modeling their mutual spatial relationships
or allowing rich interactions. As a result, these methods frequently struggle to distinguish between
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visually similar yet geographically distant scenes. Furthermore, existing training objectives primarily
focus on point-wise similarity between individual images and locations [8, 9, 15], overlooking the
rich spatial relationships among candidates—such as the spatial dependence (i.e., Tobler’s First Law
of Geography [16]) and relative distances between them—which are crucial for geolocalization.

To address these limitations, we propose GeoRanker, a distance-aware ranking framework designed
to model spatial relationships among candidate locations. Rather than relying on independent
similarity scores, GeoRanker models the interaction between the query image and each candidate
through a large vision-language model (LVLM), which captures rich spatial semantics via cross-
modal alignment, and learns a scalar distance score that reflects their geographic proximity. Central
to our approach is a multi-order distance optimization objective that ranks not only the absolute
distances between the query and individual candidates (first-order supervision), but also the relative
differences between candidate distances (second-order supervision). This formulation allows the
model to learn both which candidate is closest and how much closer it is compared to others, capturing
rich spatial structure that naïve heuristics overlook. Through this design, GeoRanker transforms the
geolocalization task from one of isolated similarity matching to one of structured spatial reasoning.

To support this training paradigm, we construct GeoRanking, a new dataset that provides spatially
diverse candidate sets for each query. Each candidate is annotated with GPS coordinates, textual
descriptions (e.g., city, country), and image data. To the best of our knowledge, this is the first ranking
dataset specifically designed for modeling spatial relationships among geographic entities. We
believe this effort will significantly contribute to advancing research in related domains. We validate
the effectiveness of GeoRanker through extensive experiments on two widely used benchmarks:
IM2GPS3K [17] and YFCC4K [18]. GeoRanker achieves state-of-the-art performance across all
geographic thresholds. For example, on IM2GPS3K, it improves street-level (1km) accuracy by
+12.9% over the current best method [14], and on YFCC4K, it yields an +37.3% improvement
at the same threshold. Our model also consistently outperforms existing approaches at coarser
scales (25km, 200km, 750km, 2500km), highlighting its robustness across granularities. Ablation
studies confirm that both components of our multi-order distance loss—first-order and second-
order supervision—contribute to improved accuracy. We also conduct comprehensive ablations to
understand the impact of various hyperparameter choices, leading to an improved understanding of
our framework. Our key contributions are summarized as follows:

1. We introduce GeoRanker, a distance-aware ranking framework that models spatial relationships
among candidate locations using a multi-order distance loss and large vision-language models.

2. We construct GeoRanking, the first dataset tailored for spatial ranking tasks, with rich multimodal
annotations spanning GPS coordinates, textual descriptions, and image data—facilitating future
research in related fields.

3. We achieve state-of-the-art performance on two well-established public geolocalization bench-
marks, with substantial gains at fine-grained localization levels, and demonstrate the effectiveness
of our approach through comprehensive ablations.

2 Related Work

Image Geolocalization. Worldwide geolocalization lies at the intersection of geography and computer
vision, and is a core topic in GeoAI [19, 20, 21] and spatial data mining [22, 23]. Existing methods for
worldwide geolocalization can be grouped into three main categories: classification-based, retrieval-
based, and RAG-based approaches. (1) Classification-based methods [24, 15, 25, 26, 9] approach
the task by partitioning the Earth’s surface into discrete Geo-grids and predicting the index of the
grid that contains the image location. The final output is typically the center coordinate of the
predicted grid. While these methods offer scalability, they may incur large errors when the true
location lies far from the grid center, even if the grid prediction is correct. (2) Retrieval-based
methods [27, 28, 29, 30, 31, 32] cast geolocalization as a similarity search problem. These methods
either use a database of geotagged images [33, 27, 34, 35, 36] or a gallery of GPS points [8], returning
the coordinates of the most similar entries to the input image as the prediction. However, these
methods fail to capture the complex spatial relationships between the query image and candidate
locations, making it difficult to reliably identify the most accurate match from the candidate pool.
(3) RAG-based methods [10, 14] first retrieve a set of candidate locations similar to the query image
from the database, then construct a prompt that integrates both the query and candidate information.

2



Query Image

Database
Retrieval(36.717,-4.426)

Training

VLM with LoRA

$$B$$

Value H
ead

Prompt

Score 1
Score 2

Score 3

Multi-order
Distance Loss

Function

Distance 1   Distance 2   Distance 3

Optimization

Inference

Query Image

Value Head

Negative
Samples CandidatesQuery

Max

(-25.347, 131.055)

Database
Retrieval

(a) Dataset Construction

Encoder

(b) Fine-tuning

Negative
Samples

Bottom

Ranking
Candidates

Top

Negative
Samples

Prompt Template

Query
Image

Candidate
Information

Negative
Information

LVLM
Candidate
Generation

Figure 2: Overview of the Distance-aware Ranking framework–GeoRanker.

This prompt is passed to an LVLM to generate a plausible GPS location. In contrast to the above
approaches, our proposed Distance-Aware Ranking framework, GeoRanker, focuses specifically on
the candidate ranking stage. By explicitly modeling the complex spatial relationships between the
query image and candidate geographic entities, an aspect overlooked by prior work, our approach
offers more reliable candidate selection and leads to improved geolocalization performance at the
global scale.

Learning to Rank. Learning-to-rank [37] (LTR) is a fundamental research direction in information
retrieval [38] and recommender systems [39], primarily used to train ranking models that refine the
order of retrieved candidates based on a given query [40]. Depending on their modeling and opti-
mization strategies, LTR methods are typically categorized into three types: pointwise, pairwise, and
listwise approaches. Pointwise methods [41, 42] take the ranking task as a regression or classification
problem by assigning a relevance score or label to each query–candidate pair independently. This
approach is simple and straightforward, yet overlooks the relative relationships among candidates.
Pairwise methods [43, 44, 45] model the relative preferences between pairs of candidates for the same
query. Pairwise methods encourage the model to assign higher scores to positive candidates while
penalizing negative ones, learning the relative preferences between different candidates. Listwise
methods [46, 47, 37, 48] can be seen as an extension of pairwise approaches, as they consider the
entire list of candidates associated with a query and optimize a loss function that directly reflects the
overall quality of the ranking. Our approach builds on the LTR foundation but adapts it to spatial
ranking by explicitly modeling and optimizing distance-aware relationships between candidates.

3 Methodology

In this section, we introduce GeoRanker, a Distance-aware Ranking method for geolocalization. An
overview of the framework is illustrated in Figure 2, which consists of two main phases: training
and inference. The training phase begins with dataset construction, detailed in Section 3.1, where
we describe how the GeoRanking dataset is built to support the training of GeoRanker. We then
present the model architecture and optimization strategy of GeoRanker in Section 3.2 and Section 3.3.
Finally, during inference, GeoRanker selects the most appropriate candidate as the prediction by
scoring the spatial relationships between the query image and a set of candidates (Section 3.4).

3.1 GeoRanking Dataset Construction

Database. Following prior work [14], we adopt the MP16-Pro multimodal dataset [14] as our database
and encode each sample into vectors. Each candidate entry includes GPS, textual descriptions (city,
country, etc.), and image data. In a candidate database C = {c1, c2, c3, · · · , cM}, each candidate cm is
encoded into a feature vector vcm = concat(Encodergps

c (cgps
m ),Encodertext

c (ctext
m ),Encoderimg(cimg

m )),
where cgps

m , ctext
m , cimg

m represent the GPS, textual, and image modalities of the m-th candidate and
Encodergps

c ,Encodertext
c ,Encoderimg are their corresponding modality-specific encoders.
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Retrieval. Since the input query image q is a single modality (image), we design its representation to
be compatible with the multimodal candidate vectors for similarity matching. The query image is
encoded as: vq = concat(fimg�gps(Encoderimg(q)), fimg�text(Encoderimg(q)),Encoderimg(q)), where
fimg�gps(·) and fimg�text(·) are adapter layers that project the visual features into the GPS and textual
embedding spaces, respectively. These adapters, along with the GPS encoder, are trained using an
InfoNCE loss [49] to align the query and candidate representations, as in G3 [14]. The remaining
encoders are initialized with pretrained weights and kept frozen during training. To retrieve candidates
for the query image, we compute the cosine similarity between vq and each candidate’s representation
vcm , and select the top-N candidates with the highest similarity scores to form the candidate set:

C′ = {c′1, c′2, . . . , c′N | sim(q, c′1) ≥ sim(q, c′2) ≥ · · · ≥ sim(q, c′N )},

where the similarity function is defined as sim(q, cm) = (vq ·vcm)/(∥vq∥·∥vcm∥). The query image,
along with the retrieved candidates will be used for training the GeoRanker, which we described next.

3.2 GeoRanker

Figure 2 (b) shows the overview of GeoRanker. Existing methods [8, 14] typically model the query
image and candidate geographic entities separately, embedding them into a shared representation
space via independent encoders. The final prediction is based on similarity scores between these
representations. However, such designs fail to capture the rich spatial interactions between the query
and candidates, resulting in a decoupled modeling process that limits the accuracy of worldwide
geolocalization. To address this issue, we propose GeoRanker, a distance-aware ranking model
designed to capture the spatial relationships between query–candidate pairs. Specifically, the query
and candidates are assembled into a prompt following a predefined template. These inputs are then
processed by an LVLM to model the complex interactions between the query and candidate. Finally,
a linear value head maps the hidden states to a scalar score that reflects the geographic distance
between the query image and the candidate location.

GeoRanking dataset and prompt construction. To support the ranking model training, we select the
top-k1 candidates from the candidate set C′ as ranking candidates, denoted by Crc = {c′1, c′2, . . . , c′k1

}.
We then take the last k2 candidates in C′ to form the negative set Cneg, which provides additional
contextual diversity and helps the model understand the relative relevance of candidate locations.
Thus, each sample in the GeoRanking dataset is represented as a triplet: {q, Crc, Cneg}, where q is the
query image, Crc contains the candidates to be ranked, and Cneg provides hard negatives to enhance
ranking discrimination. Each triplet is formatted using a structured prompt template:

{query image} How far is this place from latitude: {candidate latitude}, longitude: {candi-
date longitude}, {candidate textual descriptions}, {candidate image}? Negative examples:
{negative information}.

The construction process can be formalized as: x = Prompt(q, Crc, Cneg, p), where p denotes the
prompt template. Note that, to reduce GPU memory consumption, we represent negative samples
using only their textual GPS coordinates and textual descriptions.

Model architecture. The constructed input x is fed into LVLM to encode both visual and textual
modalities and to capture the spatial interactions between the query and candidate. To enhance the
model’s representation capacity while maintaining training efficiency, we insert LoRA (Low-Rank
Adaptation) [50] modules into the intermediate layers of the LVLM backbone during training.

We use the hidden states corresponding to the final position token as the joint representation of the
input. A lightweight value head, implemented as a single linear layer without bias, is then applied
to map this representation to a scalar score. This score serves as the estimated geographic distance
between the query image and the candidate location:

s = w⊤hfinal, where hfinal = LVLM(x)[−1] (1)

where s ∈ R denotes the final score, w ∈ Rdim and hfinal ∈ Rdim are the weight matrix of the value
head and the final position token’s representation, dim is the dimension of the last hidden states. In
addition, LVLM(·) denotes the large vision-language model used to encode the input x.
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3.3 GeoRanker: Optimization with Multi-Order Distance Objective

Existing geolocalization training methods typically focus on point-wise image-to-location similarity,
without modeling the spatial relationships among candidate locations. To address this limitation, we
propose a multi-order distance optimization objective to train GeoRanker. Our objective incorporates
both the first-order distances between the query and each candidate, and the second-order relationships,
defined as the relative differences between first-order distances, to guide the model during training.

First-order distance loss. We optimize the first-order distance ranking using a partial Plackett-Luce
(PL) loss [51, 52]. Given k1 candidates with predicted scores {s1, s2, . . . , sk1}, we first sort the cor-
responding geodesic distances {d1, d2, . . . , dk1} in ascending order to obtain an index permutation π
such that dπ(1) < dπ(2) < · · · < dπ(k1). We then use the reordered scores {sπ(1), sπ(2), . . . , sπ(k1)}
to compute the loss. Let K(1) ≤ k1 be a hyperparameter controlling how many top-ranked candidates
are included in the objective. For each sample, the partial Plackett-Luce loss is defined as:

L(1)
PL = − 1

K(1)

K(1)∑
i=1

log
exp(sπ(i))∑k1

j=i exp(sπ(j))
(2)

Second-order distance loss. To capture the relative spatial differences among candidates, we
introduce a second-order distance loss based on pairwise distance gaps. This objective supervises the
ranking of first-order distance differences, encouraging the model to assign higher score differences
to candidate pairs that are more distant in geolocation. Specifically, we first compute all pairwise
first-order differences in distances and predicted scores:

∆di,j = dπ(i) − dπ(j), ∆si,j = sπ(i) − sπ(j), for 1 ≤ i < j ≤ k1 (3)

This results in P = k1(k1−1)
2 pairs. We sort the distance differences ∆di,j in ascending order (so

larger spatial gaps appear earlier), and apply the same permutation to the score differences ∆si,j ,
resulting in an ordered sequence ∆s(1), . . . ,∆s(P ).

Let K(2) be a hyperparameter that specifies the number of top-ranked pairs included in the loss.
We define K(2) = [(k1−1)+(k1−K(1))]×K(1)

2 , which ensures that the second-order loss focuses on
candidate pairs where at least one candidate is involved in the first-order loss computation. The
second-order partial PL loss is then computed as:

L(2)
PL = − 1

K(2)

K(2)∑
i=1

log
exp(∆s(i))∑P
j=i exp(∆s(j))

(4)

This formulation encourages the model to preserve the ordering of spatial gaps in the score space, so
that larger geographic differences lead to larger score gaps.

Joint optimization. We jointly optimize the model with both the first-order and second-order
objectives. The total loss is defined as a weighted sum of the two components:

Ltotal = λ · L(1)
PL + (1− λ) · L(2)

PL (5)
where λ is the weighting coefficient that balances the contribution of the first-order and second-order
distance losses, respectively. We will ablate the impact of key hyperparameters in Section 4.3.

3.4 Inference

During inference, GeoRanker integrates both retrieved candidates from a database and generated
candidates from a LVLM, following prior work [10, 14]. Given a query image q, we first retrieve
a set of candidates Cr and collect contextual negative samples Cneg. Simultaneously, the query q is
passed through an LVLM to generate a new set of candidates Cg, referred to as generated candidates.
The prompt for generating candidates is detailed in Appendix A. We then form query–candidate
pairs by combining q with each candidate c ∈ Cr ∪Cg, and feed these inputs into GeoRanker to obtain
a set of distance scores:

sc = GeoRanker(q, c), ∀c ∈ Cr ∪ Cg (6)
Finally, we select the candidate with the highest score and use its GPS coordinates as the prediction:

ĉ = arg max
c∈Cr∪Cg

sc (7)

It is worth noting that the generated candidates typically lack additional modalities such as textual
descriptions and images. As a result, we use only their GPS coordinates during inference.
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4 Expeirments

4.1 Setup

Dataset and evaluation metrics. We use MP16-Pro from prior work [14] as our database in
constructing the GeoRanking dataset. For evaluation, we follow previous work [8, 10, 14] and
assess performance on two widely used public benchmarks IM2GPS3K [17] and YFCC4K [18]. The
evaluation metric reports the percentage of predictions whose geodesic distance to the ground-truth
coordinates falls within a set of thresholds: 1km, 25km, 200km, 750km, and 2500km.

GeoRanking dataset. In this work, we construct the first ranking dataset for modeling distances
between geographic entities. Specifically, for each query image, we retrieve a set of candidates based
on embedding similarity. Each candidate is associated with GPS coordinates, textual descriptions
(e.g., city, country), and image data. These candidates serve as input for subsequent ranking models.
In total, we construct 100k samples, resulting in 2 million query–candidate pairs. By releasing
this dataset, we aim to support progress in geolocalization and related research areas such as GeoAI,
information retrieval, and LVLM. Example entries are provided in the Appendix B for reference.

Implementation details. During training, we retrieve 20 candidates from the database for each
query. The top-7 are used as retrieval candidates, while the bottom-5 serve as negative samples.
The vision encoder and text encoder are pretrained models from CLIP [53]. The GPS encoder is
initialized with weights from GeoCLIP [8] and then fine-tuned. We use Qwen2-VL-7b-Instruct 1

as the LVLM backbone in GeoRanker. For LoRA fine-tuning, we target the q_proj, k_proj, and
v_proj modules, with a rank of 16, scaling factor of 32, and LoRA dropout of 0.05. GeoRanker is
fine-tuned with AdamW [54] optimizer with a learning rate of 1e-4, a batch size of 4, and for 1 epoch.
For joint optimization, we set the weighting coefficient λ = 0.7, and K(1) = 1. All experiments
are conducted using Pytorch on 4 NVIDIA L40S GPUs. During inference, following [10, 14], we
use GPT4V 2 as the LVLM for candidate generation. We use |Cr| = 12 retrieved candidates and
|Cg| = 3 generated candidates for IM2GPS3K and |Cr| = 14, |Cg| = 5 for YFCC4K. Additional
details regarding the training environment and runtime are provided in Appendix C.

Baselines. To evaluate the effectiveness of our approach, we conduct comprehensive experiments
and compare it against 11 baselines: [L]kNN, sigma=4 [1], PlaNet [15], CPlaNet [15], ISNs [55],
Translocator [25], GeoDecoder [26], GeoCLIP [8], Img2Loc [10], PIGEON [9], G3 [14], including
the state-of-the-art. A detailed description of each baseline is provided in Appendix D.

4.2 Main Results

As shown in Table 1, GeoRanker achieves state-of-the-art performance across all evaluation thresholds.
For example, on IM2GPS3K, it improves the most challenging street-level accuracy by 12.9% over
the best baseline G3, and on YFCC4K, it achieves an 37.3% relative gain at the same threshold.
Among the baselines, GeoCLIP [8], Img2Loc [10], PIGEON [9], and G3 [14] exhibit relatively strong
performance due to classification-based methods are limited by systemic biases from fixed candidate
grids. Compared to these stronger baselines, our method GeoRanker achieves superior results by
explicitly modeling the spatial relationship between each query–candidate pair using a multi-order
distance optimization objective. This enables the model to accurately identify the geographically
closest candidate as the prediction, further enhancing geolocalization accuracy. In summary, our
approach achieves state-of-the-art performance across all datasets and metrics, demonstrating its
effectiveness and superiority. Furthermore, Appendix E presents representative examples across
various error thresholds to offer intuitive insights into the distribution of query images at different
localization accuracies.

4.3 Ablation Study

To better understand the contribution of each component, we conduct ablation studies by sys-
tematically varying key modules of our approach. (1) w/o L(2)

PL . Our method without second-
order distance loss in training. (2) w/o Cneg. Our method without negative information in

1https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
2https://openai.com/
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Table 1: Main results on IM2GPS3K and YFCC4K. For all metrics, higher is better. The best-
performing results are highlighted in bold, while the second-best results are underlined. ∆ represents
the relative improvement of our method over the best baseline.

Methods IM2GPS3K YFCC4K

Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

[L]kNN, sigma=4 [1] ICCV’17 7.2 19.4 26.9 38.9 55.9 2.3 5.7 11 23.5 42
PlaNet [24] ECCV’16 8.5 24.8 34.3 48.4 64.6 5.6 14.3 22.2 36.4 55.8

CPlaNet [15] ECCV’18 10.2 26.5 34.6 48.6 64.6 7.9 14.8 21.9 36.4 55.5
ISNs [55] ECCV’18 10.5 28 36.6 49.7 66 6.5 16.2 23.8 37.4 55

Translocator [25] ECCV’22 11.8 31.1 46.7 58.9 80.1 8.4 18.6 27 41.1 60.4
GeoDecoder [26] ICCV’23 12.8 33.5 45.9 61 76.1 10.3 24.4 33.9 50 68.7

GeoCLIP [8] NeurIPS’23 14.11 34.47 50.65 69.67 83.82 9.59 19.31 32.63 55 74.69
Img2Loc [10] SIGIR’24 15.34 39.83 53.59 69.7 82.78 19.78 30.71 41.4 58.11 74.07
PIGEON [9] CVPR’24 11.3 36.7 53.8 72.4 85.3 10.4 23.7 40.6 62.2 77.7

G3 [14] NeurIPS’24 16.65 40.94 55.56 71.24 84.68 23.99 35.89 46.98 64.26 78.15

GeoRanker Ours 18.79 45.05 61.49 76.31 89.29 32.94 43.54 54.32 69.79 82.45
Rel. Improvement ∆ ↑ 12.9% ↑ 10.0% ↑ 10.7% ↑ 5.4% ↑ 4.7% ↑ 37.3% ↑ 21.3% ↑ 15.6% ↑ 8.6% ↑ 5.5%

training and inference. (3) w/o ctext
m . Our method without textual descriptions of candidates

in training and inference. (4) w/o cimg
m . Our method without image data of candidates in

training and inference. (5) w/o Cg. Our method without generated candidates in inference.
Table 2: Ablation study on IM2GPS3K.

Methods Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

w/oL(2)
PL 18.48 44.61 60.96 75.61 88.28

w/o Cneg 17.35 44.51 60.82 76.37 88.28
w/o ctext

m 18.02 43.91 60.19 76.61 88.62
w/o cimg

m 15.58 41.77 59.15 75.40 88.35
w/o Cg 18.21 43.47 59.69 75.47 88.75

Ours 18.79 45.05 61.49 76.31 89.29

Table 2 presents an ablation study on the
IM2GPS3K dataset, and the results for YFCC4K
are illustrated in Appendix F. From Table 2 we
draw several key insights: (1) All components in
our framework contribute positively to the final
performance, demonstrating the effectiveness of
our design. (2) Comparing our full model with
the variant without second-order distance loss
(L(2)

PL ), we observe more substantial improve-
ments at coarse-grained levels (e.g., country and
continent). This highlights the benefit of modeling second-order spatial relationships among candi-
dates, which enables finer-grained ranking and enhances geolocalization accuracy. (3) Removing any
of the modality-aware prompt components—such as negative candidates (Cneg), textual descriptions
(ctext

m ), or image data (cimg
m )—leads to performance drops, confirming that incorporating multi-modal

cues into the prompt is beneficial. Among these, visual information yields the most significant gain,
underscoring the importance of image semantics. (4) Finally, the variant without generated candidates
(Cg) underperforms our method, showing that generated candidates provide complementary value.
This is especially important in scenarios where the retrieval database lacks relevant examples, and
generation can introduce novel, informative candidates that enhance the overall candidate pool.

4.4 Hyperparameter Analysis

To better understand the impact of key hyperparameters, we conduct a systematic ablation study
by varying each at a time while keeping others fixed. The hyperparameters considered include: (1)
Number of retrieval candidates in training |Crc|. (2) Number of retrieval candidates during
inference |Cr|. (3) Number of generated candidates during inference |Cg|. (4) Weighting
coefficient λ. (5) Number of top elements involved in the first-order loss (K(1)). Unless otherwise
specified, we use the following default values: |Crc| = 5, |Cr| = 10, |Cg| = 5, λ1 = 0.7, and

3 5 7 9
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Figure 3: Hyperparameter analysis at the region level on IM2GPS3K. Trends observed at the region
level are representative across different geographic levels. Results for all hyperparameters across all
levels can be found in Appendix G.
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Table 3: Comparison with other ranking baselines.

Methods IM2GPS3K

Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

Random 10.04 29.72 42.17 57.82 75.24
Top1 13.31 34.03 45.48 61.56 78.04

Prompting 16.62 40.21 54.55 70.07 83.24

Ours 18.79 45.05 61.49 76.31 89.29
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Figure 4: Time efficiency.

K(1) = 1. Empirically, we find that the trends of each hyperparameter remain largely consistent
across all levels, indicating the stability and robustness of our model under varying geolocalization
granularities. For clarity and brevity, we present results at the region level as a representative example
in Figure 3, while full results for all levels are provided in Appendix G.

Impact of candidate scales in training and inference: (1) Increasing |Crc| initially improves perfor-
mance, followed by a plateau. This suggests that increasing the number of candidates moderately
raises task difficulty, which in turn provides more supervision signals and benefits model training. (2)
The number of retrieval candidates used during inference |Cr| also exhibits a rising-then-stabilizing
trend. A larger pool of retrieval candidates increases the likelihood of including the correct candidate,
and the consistent performance gain further demonstrates the effectiveness of our GeoRanker, which
can robustly identify the most relevant one from a diverse set. (3) The model shows relatively flat
performance when varying |Cg|, indicating that even a small number of generated candidates is
sufficient to yield competitive performance.

Impact of hyperparameters in multi-order distance objective: (1) As the weighting factor λ
increases, performance first improves and then declines. This highlights a trade-off between the first-
and second-order objectives—overweighting the former can reduce the benefit of modeling relative
spatial relationships. (2) K(1) shows a consistent downward trend. Larger values introduce more
candidate combinations in the partial PL loss during training, which may deviate from the candidate
distribution at inference and lead to train-test mismatch. This weakens the supervision signal and
degrades performance.

4.5 Comparison with Other Ranking Baselines

To demonstrate the superiority of GeoRanker in ranking ability, we conduct comparative experiments
with the following ranking baselines. (1) Random: Randomly sampling one candidate from Cr ∪ Cg
as prediction. (2) Top-1: Using embedding similarity to rank candidates and select the top-1 as
prediction. The embedding model is fine-tuned following G3 [14] with multi-modal information. (3)
Prompting: The query image, candidate information, and negative samples are incorporated into
the prompt, using LVLM to select the most appropriate candidate as the final prediction. We use
Qwen2-VL-7b-Instruct for fair comparison. From Table 3, we can find that our approach (GeoRanker)
outperforms all baselines, achieving the highest performance across all metrics. This is because
GeoRanker leverages large vision-language models to jointly encode query-candidate interactions
and learns fine-grained distance representation through multi-order distance loss during training,
enabling it to effectively select accurate predictions from a pool of candidates.

4.6 Efficiency Analysis

Beyond accuracy, efficiency is critical for real-world deployment. We evaluate our approach along
two dimensions: time efficiency, measuring inference latency, and data efficiency, assessing the
effectiveness of data usage.

Time efficiency. Figure 4 compares the inference time of GeoRanker with the prompting-based
method (introduced in Section 4.5) across varying numbers of candidate inputs. As expected,
inference time increases for both methods as the number of candidates grows, due to additional
scoring iterations required for GeoRanker and longer prompts for the prompting baseline. Notably,
GeoRanker consistently achieves substantially lower inference latency compared to prompting.
Within the 1-10 candidate size range, GeoRanker takes less than half the time required by prompting.
It is also worth highlighting that GeoRanker naturally supports parallel computation over candidate
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Figure 7: Case study illustrating the effectiveness of GeoRanker in re-ranking candidates.

scoring, enabling substantial reductions in inference latency for large-scale deployment. In contrast,
Prompting suffers from longer and sequential input construction, which limits such optimization.

Data efficiency. Figure 5 illustrates the performance of GeoRanker at different geographic scales
when fine-tuned with varying amounts of data. The x-axis represents the number of samples (in units
of 10K), and the y-axis shows the corresponding accuracy. From Figure 5, we observe the following:
(1) GeoRanker exhibits a stable and consistent improvement in accuracy as the training data size
increases across all geographic levels, demonstrating strong scalability and generalization capacity.
(2) For comparison, we also plot the performance of the state-of-the-art method G3. Remarkably,
GeoRanker surpasses G3 across all levels even when fine-tuned on just 10% samples, highlighting its
data efficiency—the ability to achieve strong performance with limited supervision.

4.7 Impact of Backbone Scale
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Figure 6: Impact of Backbone
Scale on Region Level.

To investigate the impact of backbone model scale on performance,
we conduct experiments using llava-onevision [56] (0.5B) and
Qwen2-VL models [57] with 2B and 7B parameters. As shown
in Figure 6, and results across all geographic levels in Appendix H,
GeoRanker’s performance consistently improves as the backbone
model size increases on both IM2GPS3K and YFCC4K. These re-
sults indicate that GeoRanker benefits from more powerful LVLM
backbones and follows the scaling law, suggesting that its upper-
bound performance can be further improved with larger models.

4.8 Case Study

To intuitively demonstrate the effectiveness of GeoRanker, we present a qualitative case study in
Figure 7. As shown on the left, the top-5 candidates retrieved are not well ordered by geographic
proximity; visually similar but geographically distant images (e.g., 870 KM away) appear at the
top ranks. After reranking with GeoRanker, the candidates are successfully reordered by their true
geographic distances, with the closest image (0.44 km away) ranked at the top and the farthest
ones pushed lower in the list. This result highlights GeoRanker’s ability to model complex spatial
relationships through query–candidate interactions, further improving the geolocalization accuracy.

5 Conclusion

In this paper, we propose GeoRanker, a distance-aware ranking framework built upon LVLM. To
enhance training, we introduce a novel multi-order distance loss that captures both absolute distances
and relative spatial relationships among candidate locations. To support this framework, we construct
GeoRanking, the first dataset specifically designed for spatial ranking tasks. Extensive experiments
on IM2GPS3K and YFCC4K demonstrate the effectiveness of GeoRanker over baselines.
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Figure 8: Examples of GeoRanking Data Entries.

A Prompts

Prompting for generating candidates Cg. Following previous work [14], we use the following
prompt template for generating candidates:

{query image} Suppose you are an expert in geolocalization. You have the ability to give
two number GPS coordinates given an image. Please give me the location of the given
image. Your answer should be in the following JSON format without any other information:
{"latitude": float,"longitude": float}.

B GeoRanking Data Entries

Figure 8 illustrates example entries from the GeoRanking dataset. Specifically, each query image is
associated with 20 candidates, and each candidate contains GPS coordinates, textual descriptions,
and image data. In total, GeoRanking includes 100K samples and 2 million query–candidate pairs.
To the best of our knowledge, GeoRanking is the first dataset specifically designed for modeling
distance-aware ranking between geographic entities. We release the dataset publicly and hope it will
foster future research in areas such as GeoAI, information retrieval, and vision-language modeling.
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Table 4: More Details on Training and Inference.
Parameter Setting

GPU NVIDIA L40S * 4
Training Time 16 hours / epoch
Total params 8,298,256,896

Trainable params 6,881,280 (0.083%)
Dataset Samples 100K

Batch Size 4
Batch Size per Device 1

Training GPU Memory Consumption 30 GB / GPU
VLM Backbone Huggingface Qwen2-VL-7b-Instruct

Deepspeed Stage 2

C More Information on Training and Inference

In this section, we provide additional details regarding the training and inference setup. Table 4
summarizes the key hyperparameters used during these phases. Most experiments were conducted on
four NVIDIA L40S GPUs. We also performed tests on two NVIDIA H200 GPUs, where training
took approximately 7.5 hours per epoch with a batch size of 4, consuming around 90 GB of GPU
memory per device with the gradient checkpointing off.

D Baseline Method Details

In this section, we will give introductions to the baselines:

• [L]kNN, σ = 4 [1]. kNN first retrieves the top-k nearest neighbor images and aggregates their
coordinates to form the final prediction. As the k decreases, the aggregation process becomes more
focused. When k euqals 1, the method turns to the NN.

• PlaNet [24]. PlaNet is the first work to formulate the worldwide geolocalization task as a classi-
fication problem. It partitions the Earth’s surface into a large number of geographical cells and
trains a convolutional neural network to predict the correct cell for each image. Unlike previous
approaches that primarily rely on landmark recognition or approximate matching with global
image descriptors, PlaNet effectively integrates multiple visible cues within the image to enhance
localization accuracy.

• CPlaNet [15]. CPlaNet follows PlaNet and propose combinatorial partitioning, which generates
fine-grained output class by intersecting larger partitions.

• ISNs [55]. ISNs enhance the input image information by extracting additional scene context
features, such as indoor, natural, or urban environments, alongside the original image content. By
incorporating these richer contextual cues, ISNs achieves improved localization performance.

• Translocator [25]. Translocator designs a dual-branch transformer framework that simultaneously
ingests the original image and its semantic segmentation map. This architecture enables the
extraction of fine-grained spatial cues and the construction of more robust feature representations
for geolocalization.

• GeoDecoder [26]. GeoDecoder identifies that earlier methods insufficiently leverage hierarchical
spatial information. It addresses this by proposing a cross-attention mechanism that explicitly
captures relationships across heterogeneous features, enhancing the model’s ability to interpret
complex location-dependent features.

• GeoCLIP [8]. GeoCLIP extends the CLIP architecture by introducing a GPS encoder, aligning
geographic coordinates with image and GPS embeddings. This enhancement enables more effective
modeling of worldwide geolocalization tasks by incorporating spatial information directly into the
learned feature space.

• Img2Loc [10]. Img2Loc advances geolocalization by integrating a RAG pipeline. It first retrieves
visually similar candidates, then formulates a prompt incorporating these candidates’ coordinates,
guiding a vision-language model to generate a final prediction.
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Figure 9: Example query images fall in different error thresholds.

• PIGEON [9]. PIGEON introduces an innovative framework that combines semantic geocell
partitioning, multi-task contrastive pretraining, and a novel loss function. By clustering candidate
locations semantically and refining predictions through targeted retrieval, PIGEON significantly
boosts localization accuracy.

• G3 [14]. G3 proposes a three-stage framework comprising Geo-alignment, Geo-diversification,
and Geo-verification. Geo-alignment aligns GPS coordinates, textual descriptions, and visual data
into a unified multi-modal representation to strengthen retrieval capabilities. Subsequently, Geo-
diversification and Geo-verification are integrated within a RAG framework to robustly generate
and select candidate geolocations.

E Query Images with Different Error Thresholds

Figure 9 presents example query images under different error thresholds (1km, 25km, 200km, 750km,
and 2500km). We observe that images with errors within 1km often contain distinctive location
cues, such as landmark buildings, which facilitate accurate geolocalization. This is partly because
retrieval candidates are more likely to retrieve visually similar images from the database due to
the popularity of such locations. Additionally, generated candidates tend to produce more reliable
predictions in these cases, as the locations are well-represented in the world knowledge embedded
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Table 5: Complete ablation study on IM2GPS3K and YFCC4K.

Methods IM2GPS3K YFCC4K

Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

Street
1km

City
25km

Region
200km

Country
750km

Continent
2500km

w/oL(2)
PL 18.48 44.61 60.96 75.61 88.28 31.97 43.12 53.53 69.03 81.19

w/o Cneg 17.35 44.51 60.82 76.37 88.28 31.57 43.06 53.62 69.09 81.67
w/o ctext

m 18.02 43.91 60.19 76.61 88.62 31.70 43.06 54.03 69.42 82.07
w/o cimg

m 15.58 41.77 59.15 75.40 88.35 15.81 27.86 41.31 61.39 77.66
w/o Cg 18.21 43.47 59.69 75.47 88.75 32.60 43.03 53.43 69.77 82.71
Ours 18.79 45.05 61.49 76.31 89.29 32.94 43.54 54.32 69.79 82.45

3 5 7 9
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Street Level

3 5 7 9
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Figure 10: Hyperparameter analysis with all geographic levels on IM2GPS3K.

in large vision-language models. In contrast, query images with large geolocalization errors (e.g.,
2500km) typically lack informative visual cues—such as images depicting open oceans or vast
grasslands—making it extremely challenging to infer their true locations. In such cases, neither
retrieval nor generation is likely to yield useful candidates.

F Complete experimental results on ablation study

Table 5 presents the complete ablation results on both IM2GPS3K and YFCC4K. Consistent with the
findings discussed in the main text, we observe that each component in our framework contributes
positively to overall performance. Moreover, different types of contextual information incorporated
into the prompt—such as visual cues, textual descriptions, and negative examples—all help improve
both model training and inference. Finally, generated candidates are shown to complement retrieval-
based candidates effectively. This is particularly beneficial for rare or long-tail query images, where
retrieval candidates alone may fail to provide sufficient clues for accurate geolocation.

G Hyperparameter Analysis with All Geographic Levels

Figure 10 shows the impact of different hyperparameters on GeoRanker across all geographic levels.
As observed, the trends of each hyperparameter remain largely consistent across levels, highlighting
the stability and robustness of our model under varying localization granularities.
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Figure 11: Impact of Backbone Scale across All Levels.

H Complete Experimental Results on Backbone Model Scale

Figure 11 shows the effect of backbone model size across all geographic levels. Consistent per-
formance improvements are observed on both IM2GPS3K and YFCC4K datasets as the backbone
scales from 0.5B to 7B parameters, further confirming GeoRanker’s scalability and compatibility
with stronger LVLM.

I Limitations

Our method achieves notable improvements in geolocalization accuracy over existing baselines. In
addition, it demonstrates superior time efficiency compared to LVLM prompting methods, and its data
efficiency allows strong performance even with relatively limited supervision. However, compared
to direct embedding-based retrieval approaches, GeoRanker introduces an additional ranking stage,
which leads to increased computational overhead during inference. One solution is to analyze the
retrieval results: if the top-k candidates are already geographically concentrated, the ranking step
can be skipped without significant loss in accuracy, thereby reducing the overall inference time. In
addition, GeoRanker supports parallel scoring of candidates during large-scale deployment, which
can significantly improve runtime and computational efficiency.
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